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The Average First Recurrence Time A

Introduction

The kinetic theory of gases contains a fundamental

paradox in that the results obtained from the theory are ir-

reversible despite the fact that gases are assumed to be com-

posed of molecules which obey the reversible laws of mechanics.

The paradox is fUrther heightened by Poincar 's Cycle Theorem

which states roughly that, no matter what is the initial con-

figuration of the molecules, the gas must return to a state

which is arbitrarily close to the initial state and that it must

do so infinitely often. Physicists have tried to explain this

paradox by stating that the time for one such Poincare cycle is

so large that the recurrence of an initially improbable state is

unlikely during the times normally available for observation.

For a fuller discussion of these topics we refer to an article

by Chandrasekhar .

In the present paper we consider the first recurrence

time of a very simple dynamical system, namely, one which has

k+l degrees of freedom xl,x 2,...,xk+l, each of which is simply-

periodic in the time - . Put

xj( ) r Aje 2 iV J=l,2,. k+l;

then the problem is to determine the smallest positive value of

T such that the point (xl( ),...,Xk+l(T )) will be within a

preassigned neighborhood of the initial point (xl(O),...,xk+l(O)).
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For simplicity, the neighborhood is assumed to be such that

(1) -v -ijl < e, J1l,2,...,k+l,

where mk+ are integers. The smallest positive value of

T such that the inequalities (1) are satisfied for some set of

integers will be called the first recurrence time of the system.

Note that

Sr (Vl,.*.,vk+l; e).

We wish to find the average of the first recurrence time for all

such systems, that is,

1 1
(2) av f f 'r (Vl'...'"Vk+l; e)dvl''.dvk+l

0 0

and in particular the asymptotic behavior of Tar as e ap-

proaches zero.

Suppose that Vk+ I is the largest of the v 3 and instead

of the inequalities (1) consider the following:

(3) Vk+i -mk+l = 0, Vin -mi !< 6, J=l,2,...,k.

Put a3 = vj/Vk+I, mk+I = t, then (3) becomes

(4) Itaj-mjj < 6, J=l,2,...,k,

where t, ml,...,mk are integers. We put

1 1
tav "f f " t(c 1..,a k; E)dahl. ' dak "

0 o



We shall show that there exist two constants cI and c2 such

that

(5) Cl 6 -k < < c2 e

For the case k=l, more can be obtained. We prove then

that

(6) tav 6 0g 2 e + 0(6 ).

The One-Dimensional Case

For any a in the unit interval, define t = t(c, e ) as

the smallest positive integer such that Ita-m < e for some

integer m, i.e., such that tc is within C of an integer. Our

problem is to evaluate

1
(7) f t(a, 6 )da.

0

Let the integer n be chosen so that -_ < 6 < - . Then it is
n n+l

clear that for any a,

1 1~a
t(n, n n+l

and so
1 1 1
ft(ci, -1)da < f t(a, e )da If t(a., y)dai.

Thus we examine

f t(z, n)dz.
0
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Any real number a is said to have an admissible value k

(a positive integer) if ka is within 1/n of an integer. Thus

t(a, 1/n) is the minimum of the admissible values for a. Any

rational number a/b with 0 < a/b < 1 defines an interval

a 1 a 1I(a/b) Eb- + l

nb b

and all points in I(a/b) have admissible value b. Furthermore

b is an admissible value for no real values of a other than

those in the intervals l(0/b), l(I/b), l(2/b),...,I(b/b).

Now if t is the minimum integer such that ta is within

1/n of an integer m, then ta-m with]6<I. Thus

* -m/t = -5, and m/t is in its lowest terms since otherwise
tn

t/(t,m) would be an admissible value for a smaller than t itself.

Thus a e I(m/t).

Let Fn denote the Farey series of order n,

0 1 n-l 1
n 1 n n

the series of rational numbers a/b in ascending order satisfying

0 < a < b < n with (a,b) = 1.

Now if the Farey series Fn-1 , of fractions a/b say, is

used to define a collection C of intervals I(a/b), we shall

prove that C covers the unit interval, but that no single

interval I(a/b) contains any member of Fn_1 other than a/b. From

this it follows that to find t(a, 1/n) we need merely locate a
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a1  a2

between two consecutive fractions - and a2 of F and we
b n-i

have

t(z, 1/n) - b1 if a is in I( ) but not in I(2);

b1 V2
a2 a 1 )

t(a, 1/n) = b2 if a is in 1(2) but not in I( 2);
a

t(a, i/n) = min(bl,b 2 ) if a is in both (2) and
bi 2

To prove the assertions above about the collection of
aI1 a2

intervals C: If and b2 are adjacent fractions in Fn-1bI  b

ate a2 1 a 2then = + and since b 2 < n then b is not in

aI1 aI  a2
I( b. To prove that i(-) and I(E2) meet, (which will

establish that C covers the unit interval) we must prove that

RI 1 1

+ >- This follows from the fact that

bl+ b2 i n,

From this argument we see that the interval (1 ), of
1

length - s splits into two parts as regards the value ofblb2

t(a, 1):
n

t(a, 1 mn(bl,b2 ) over a subinterval of length 1n .min(b1 ,b2 )

t(i 1) max(b,b 2 ) over one of length 1 1
,n b1b2  nmin(blpb 2 )

I
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Thus
a2/b2  min (b1 , b) max(bl,b2 ) max(bl,b2 )

f t~a 1)da 2)2)2
/ n n'min(b1,b 2 ) blb2  n'min(bjb 2 )

n-max(bl'b
2 )

n.min(bl,b2 )

Let us denote min(blb 2 ) by b and max(b1lb2 ) by B, so that

1 n-

(8) f t(a, )da - 7(+ -- )
0 n n

where the sum ranges over all pairs of consecutive fractions in

Fn_1 .

Lemma 1. Consider the set Sb of all fractions in F

with fixed denominator b, where I < b < n-2. Let T be the set of

all fractions which are neighbors to members of Sb, and which

have denominators exceeding b. If B is any integer such that

(B,b) = 1, b + B > n, n-I I B > b + I, then the set T has

exactly two members with denominator B.

Proof. The equation xb - yB - 1 has exactly one solution

in integers x and y such, that 1 x < B-l, 1 y 1 b-1. The

fractions x/B and y/b are in Fn_l, and are neighbors, for if

y/b had the neighbor h/k on the right, y/b < h/k < x/B then

hb - yk = 1 and xb - yB 1 imply that

b(xk - hB) - k - B.
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But xk -hB >, so that k -B > b and k > b +B > n, a contra-

diction.

Similarly the equation Xb - YB = -1 has exactly one

solution X, Y with 1 < X S B-1, 1 < Y < b-i and likewise the

fractions X/B < Y/b are neighbors in Fnl . Thus we have shown

that the set T contains at least two fractions with denominator

B. On the other hand if a/b and A/B are neighbors in F

then aB - Ab = + 1, so that the two cases we have examined are

the only possible ones. Hence the lemma is proved.

Returning to the formula (8), we first compute the sum

Z I/n. Let ,( (k) be the Euler function denoting the number of

integers less than and prime to k, and define

(n) = -P(( +(n).

Then the number of terms in FnI with denominator k < n-I is

S(k), except in case k = 1, there being two terms with

denominator 1. Hence we have

z (1) + ( n(2)+n nn

By virtue of this and Lemma 1 we see that (8) can be written as

1 1 n-2 n-1 n-B
0 n n)d n b-i b+l b

(9) B+b > n
(Bb) -i



Lemma 2. '(m) !-- + O(m log m)

Y (). + (2) (m) .6m + O(log2m)
1 2 m 7r2

q (m+l) + (m+2) +...+ ( 6og2 + (2m
(r+1)2  (m+2)2  (2m) 2 r2 m

2
Proof. The first is in Hardy and W. ,ght . The third

result is a special case of a result of D. H. Lehmer3. The

second result can be derived from the first as follows:

(_ ) + 4e (2) ++ 0
1 2 m

= (1) + 1(2)- .(1) + .(3), (2) -1)
+ +M

1 2 3 m

rn-i
-1
J=' j(j+l) m

+- j2 + (m log m) +r-i o(j log j)
j 3i j(j+) + J=l o(J+')

"3 2m + O(log m)2 + O(log m) + O(log2 m)

6m + O(log2 i).

77.



Lemma 3. Let (J,n) denote the number of integers < J

that are prime to n. Then

(J,n) = j ( + o()-n)
n

Proof. Lehmer C3, p. 1188J proves that

( (J,n) - j L(n) I < d(n)

where d(n) is the number of divisors of n. To prove that

d(n) - 0(C-), say d(n) < 41H to be definite, we can use

induction on the number of prime factors of n. Write

kI  k < j pk 1

n = P 1  .'Ps " If s = 1, we must prove that (1+kl) < 16P

It can be readily verified that

(*) (1+k1 ) 2 < 4p,

for p = 2, and so a fortiori for p > 2. If s = 2, we must prove

that
kI k2

12 2 1 2(1+k1)(l+k 2 ) < 16Pl P2

This is a consequence of ((). Next, if we assume the result

for numbers with fewer than s prime factors, with s > 3, then

we have

d(n) - (1+ks)d(--R-) < (1+k) 4/<M 4< n
Ps ks ip8k

provided that (l+ks)2 < ps , and this is readily verified

since ps 5.
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Lemma 4. Let S(3,n) denote the sum of the integers that

are < J and prime to n. Then
m2

s(j,n) - V Y(n) + O(j [).
2n

Proof. We use induction on the number of prime factors

of n. Let us write

1l 5s n
n = p, "'ps k nl j = qps + r, 0 < r < ps.

Ps

First, we prove the identity

(10) S(J,n) = S(J,nl) - psS(q,nl).

This can be seen by observing that none of the numbers

PSI 2ps''00,qps are included in S(3,n), but some of these are

included in S(J,nl), namely, the integers in 1,2,...,q that are

prime to n., each multiplied by ps"

If s = 1, then (10) gives us

S(J,n) - S(J,I) - psS(q,l) = p(,+) q(q+l)2 2

Now, since

a 2 (n) .I 2 (1 )

2n 2 Pl

we have

S(J,n) - 2 Plq 2"pl + j2/pl )

2n 2 1 1 1

rq + + < pq + + pq +r j < j Ji
2 2 p1



Before turning to the rest of the induction argument, we

handle the special case of integers n divisible by 2 and 3 but

by no other primes. Thus ( ) .I, and

n 6 3

S(Jn) - s(j,6) - I + 5 + 7 + 11 + 13 + 17+...

- 6 +18 + 30+ -. +[ 2f- j]-1 6 + O(j)

M 6F1 + 3 + 5+.--+(21"%] -l)J + O(J)

2 2 2(n= 6/J+ o(j) -+ o(j) =. J, + o(j i).
6 2n

We now use induction, assuming that the lemma holds for

integers n with fewer than s prime factors; and we may presume

that ps > 5 because of the above special case. Applying (10) we

have

S(J,n) = S(J,nl) - psS(q,nl)

3
2((n) P~q ((n,) + o(J(u 1 ) + p8

° (q V'-i)
2nI  2nI

But

J 2r ( n l )  2) 2(nl) (nl) 2 21 1s) "n 2nl ( q p8 + 2qr +-n)
2n 2n P8  2n n (

Hence

j2 41() (nl) r2

S(J,n) - - (qr +--) + O(Jf-il) + O(psq i-1).
2n nI 2p
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n-2 n-I n-B
(11) Ti= z z

B=b+l b

In T2 we have 2b < n, n > 2b-l, so B + b > n implies

B > n - b > b + 1; therefore the sum ranges from B = n-b to

B n-I and we write

n-l

(12) T2 = z n-B
b=l B=n-b b

(B,b)=l

We begin with (11). Replace B by b + k in the inner sum; then

n-i n n-b

n-B _ n-B n-b-k n-b

B=b+l B=b+l b k=l b - -b
(B,b)=l (B,b)=l (k,b)=1

= 0 (n-b,b) S(n-b,b)

n-bg(nb) (b) + o( -b) (n-b ) + O[(n-b)fiQt+O(1)

2b

with the help of Lemmas 3 and 4.

Therefore, using Lemma 2, we find that

n-2 2T1  x b n V (b) + (b) O(r-n)
=b.tnfl' 2 b2  b 2

R2

n 6log 2 _n6n 3n13) + -

2 ,v2 -n(.2--,)+-(-2". 3n)ofr2

22 (3 log 2 - 15) + o(n,, f).
T2!
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To evaluate (12), we begin with the inner sum. Define

as the least positive residue of n modulo b, thus

r - n(mod b), 1 < r < b. Then we replace B by n-r-i so that

(B,b) = 1 becomes (i,b) = 1.

We have

n-I -B b-r r+r
z n- = E = E +

B=n&-b b i= -r+l b b b
(B,b)=l (i,b)=

(13)

r b-r i -1

rb(+) + Z (1 +(r-1, b).
i=l i= -r+1
(i,b)= (ib)=l

But, since

b-r + -1 b-r b-I i
I- 1+1 E I-+ z Ui l i= -r+l b =l b i=b-r+l

(i,b)=l (ib)=l (i,b)=l (i,b)=1

b-1i Li b-i
= Z - = z - + z1 b 1 b l b
(i,b)=l (i,b)=1 (i,b)=j.

2

we find that (13) becomes

r (b) + (b) _ (r,b) + 0(1)
b 2

= (b) + O( rb)
2

by Lemma 3.

I
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We use this result to evaluate the sum T2. We have

n-I

T20b=l( 2 b-

1 3(n)2
- + O(n4-) by Lemma 2

2

3n2
+ +O(nfin).

5nr2 ;

Then =n2 I- - 3

T1 + T2  - . 3 log 2 + O(nVn).

Thus the equation (9) becomes

t(a, -)da (n-1)+ 2 n2 lo 2+(r0o n n r2 o 2 (r

I" -- 3n2n 
!

n + O(n log n)f + n2 6 log; 2-3 + 0(/n ,

6n log 2 +
.2

Consequently, we have

0 r

o p
which proves ( 6). i

i
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To illustrate the higher dimensional cases, we take the

two dimensional situation. The integer b is an admissible value

for all pairsof real numbers lying in the region defined by the

Cartesian product of any intervl

i(O/b), l(i/b),...,I(b/b)

with any other. These intervals have length 2/n (disregarding

what falls outside the unit interval of course) and the region

defined by the Cartesian product has area 4/n2 . Thus

11 o)dclda 2 >I I. + 2 -+

n

n24
n2
8

because the region with actual (not admissible) value b is
amotoara4- n2

at most of area Thus the t-values larger than h- nave

been replaced by smaller values. In k dimensions, this argument

proves the existence of a positive constant c, such that

111 1
f f f f t(al,-..a k , -)dal dak  ic l n

0 0 0 0 n 1

This integral is less than nk, because by the pigeon hole
procedure we can find a positive integer m I nk for any

such that mal,...,mk are all within--i of an integer.
-- n
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Therefore, t < nk and then

I11 1

f f ... f t da ea* dak < n
00 0

This completes the proof of (5).
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